Group Manipulation in Judgment Aggregation Arianna Novaro Ulle Endriss Sirin Botan

 $J\subseteq \Phi$

ILLC – UNIVERSITY OF AMSTERDAM

Judgment aggregation is a formal framework for integrating the views of several agents into a single collective view. This is the first study of strategic behaviour by groups of agents in judgment aggregation. We introduce the concept of group manipulation – where a coalition of agents can cooperate to manipulate together – and characterise the family of **aggregation rules** for which group manipulation can be avoided.

Judgment Aggregation

Agenda

 $\Phi := \Phi^+ \cup \{\neg \varphi \mid \varphi \in \Phi^+\}$

• finite set of formulas of propositional logic

Single-Agent Strategyproofness

A rule is strategyproof if no agent has an incentive to manipulate by reporting an untruthful opinion.

Definition 1. A rule F is **strategyproof**, if for all profiles

- only non-negated formulas in the *pre-agenda* Φ^+
- **atomic** if Φ^+ only contains atomic propositions

Judgment Set for Φ

- complete if $\varphi \in J$ or $\neg \varphi \in J$ for all $\varphi \in \Phi^+$
- consistent if it is logically consistent
- $\mathcal{J}(\Phi)$ is the set of complete & consistent judgment sets over Φ

Agents and Profiles

• $\mathcal{N} = \{1, \ldots, n\}$ is a finite set of **agents**

• $J = (J_1, \ldots, J_n)$ is a **profile**, vector of *individual* judgment sets • $N_{\varphi}^{J} = \{i \in \mathcal{N} \mid \varphi \in J_i\}$ is the coalition of supporters of φ in J• $(\boldsymbol{J}_{-i}, J'_i)$ is a profile like \boldsymbol{J} , except that J'_i replaced J_i • **J** and **J'** are *C*-variants, for $C \subseteq \mathcal{N}$, if $J_i = J'_i$ for all $i \in \mathcal{N} \setminus C$

Flipping

 $J^{\rightleftharpoons \varphi}$ means replacing φ by $\neg \varphi$ or $\neg \varphi$ by φ

· $J^{\rightleftharpoons S}$ means flipping formulas in S in all judgment sets in J

 $\mathbf{J} \in \mathcal{J}(\Phi)^n$, agents $i \in \mathcal{N}$, and judgment sets $J'_i \in \mathcal{J}(\Phi)$ it is the case that $F(\mathbf{J}) \succeq_i^{\mathbf{J}} F(\mathbf{J}_{-i}, J'_i)$.

Some rules, e.g. uniform quota rules, are strategyproof. **Theorem 1.** A neutral and unbiased aggregation rule F is single-

agent strategyproof iff it is both independent and monotonic.

Group Strategyproofness

A rule is group-strategyproof if no coalition of manipulators has an incentive to report untruthful judgments.

Definition 2. A rule F is group-strategyproof against coalitions of up to k manipulators, if for all profiles $\mathbf{J} \in \mathcal{J}(\Phi)^n$, coalitions $C \subseteq \mathcal{N}$ with $|C| \leq k$, and C-variants $J' \in \mathcal{J}(\Phi)^n$ of J it is the case that $F(\mathbf{J}) \succeq_i^{\mathbf{J}} F(\mathbf{J'})$ for all agents $i \in C$.

Example. If the first three agents form a coalition, they will benefit from flipping their judgments on the indicated formulas.

Aggregation Rules

- uniform quota rules $F_q(J) = \{\varphi \in \Phi \mid \#N_{\varphi}^J \ge q\}$ for quota q
- nomination rule if q = 1
- weak majority rule if $q = \lceil \frac{n}{2} \rceil$
- unanimity rule if q = n

Axioms for Aggregation Rule F

• **independence** $N_{\varphi}^{J} = N_{\varphi}^{J'}$ implies $\varphi \in F(J) \Leftrightarrow \varphi \in F(J')$ • monotonicity $\varphi \in J'_i \setminus J_i$ implies $\varphi \in F(\boldsymbol{J}) \Rightarrow \varphi \in F(\boldsymbol{J}_{-i}, J'_i)$ $N_{\varphi}^{\boldsymbol{J}} = N_{\psi}^{\boldsymbol{J}}$ implies $\varphi \in F(\boldsymbol{J}) \Leftrightarrow \psi \in F(\boldsymbol{J})$ • neutrality • **unbiasedness** $F(\mathbf{J}^{\rightleftharpoons S}) = F(\mathbf{J})^{\rightleftharpoons S}$ for any $\mathbf{J} \in \mathcal{J}(\Phi)^n$ and $S \subset \Phi^+$ where $\boldsymbol{J}^{\rightleftharpoons S} \in \mathcal{J}(\Phi)^n$

Preferences

- J_i is the most preferred judgment set of agent i
- preference ranking in terms of distance to J_i

Hamming Distance

 $H(J, J') = |J \setminus J'| + |J' \setminus J|$

 $J \succcurlyeq_i^J J' \Leftrightarrow H(J, J_i) \leqslant H(J', J_i)$

 $F: \mathcal{J}(\Phi)^n \to 2^{\Phi}$

Almost no rule is group-strategyproof.

Theorem 2. Suppose the agenda Φ is atomic. Then a neutral and unbiased aggregation rule F is group-strategyproof against coalitions of up to 3 manipulators iff F is independent and monotonic, and if none of the restrictions of F to 3 agents and 3 pre-agenda formulas is either the nomination rule or the unanimity rule.

Uniform quota rules are not group-strategyproof.

Corollary 3. No uniform quota rule F_q with a quota q satisfying $3 \leq q \leq n \text{ or } 1 \leq q \leq n-2 \text{ that is defined on an atomic agenda } \Phi$ is group-strategyproof.

Strategyproofness for Fragile Coalitions

• weak order on judgment sets

Example. If agent 3 only cares about the conclusion $(p \land q)$ she can manipulate the outcome in her favour by rejecting q.

> $p \quad q \quad p \wedge q$ Agent 1 \checkmark \checkmark Agent 2 \checkmark × × Agent 3 \times (\checkmark) \times PB-Rule \checkmark (\checkmark)

A manipulator may decide to unilaterally opt-out of a manipulation. **Definition 3.** A rule F is group-strategyproof against fragile coalitions of up to k manipulators, if for all profiles $J \in$ $\mathcal{J}(\Phi)^n$, coalitions $C \subseteq \mathcal{N}$ with $|C| \leq k$, and C-variants $J' \in$ $\mathcal{J}(\Phi)^n$ of \mathbf{J} with $F(\mathbf{J'}) \succ_i^{\mathbf{J}} F(\mathbf{J})$ and $F(\mathbf{J'}_{-i}, J_i) \neq F(\mathbf{J'})$ for all $i \in C$ it is the case that $F(\mathbf{J'}_{-i}, J_i) \succ_i^{\mathbf{J}} F(\mathbf{J'})$ for some $i \in C$. If agents can opt-out, strategyproof rules are group-strategyproof.

Theorem 4. A neutral and unbiased aggregation rule F is groupstrategyproof against fragile coalitions of manipulators iff it is independent and monotonic.