
Goal-Based Collective Decisions
Axiomatics and Computational Complexity

Our agents express propositional goals over binary issues to reach a collective decision.

We adapt axioms and rules from Social Choice Theory, characterizing a generalization of the majority rule.

We study the computational complexity of finding the outcome of our rules (i.e., winner determination).

Agents N, •, and � want to visit a city together. There

are three points of interest: an ancient belfry (
), a mu-

sic museum (�), and the beach (≈).
N wants to visit everything, • wants to go only to the

museum, � wants to visit a single place. . .

Agents express goals with propositional formulas

γN : 
 ∧�∧ ≈
γ• : ¬
 ∧� ∧ ¬ ≈

γ� : (
 ∧ ¬� ∧ ¬ ≈) ∨ (¬
 ∧� ∧ ¬ ≈) ∨ (¬
 ∧ ¬�∧ ≈)

Framework and Notation

I A set N of n agents has to decide over a set I of m
binary issues (there are no integrity constraints)
• N = {N, •,�} and I = {
,�,≈}

I Every agent i has a propositional formula γi as her
goal, whose models are in the set Mod(γi)

I Vector mi(j) = (m0
ij,m

1
ij) indicates the number of 0s

and 1s for issue j in the models of γi
• Mod(γ�) = {(100), (010), (001)}
• m�(�) = (2, 1)

I A goal profile Γ = (γ1, . . . ,γn) collects agents’ goals

I A goal-based voting rule is a collection of functions

F : (LI)n → P({0, 1}m) \ ∅ for all n and m, where

LI is a propositional language over I.

I F is resolute if it always returns a singleton

(irresolute otherwise)

Goal-based Voting Rules

Conjv(Γ) =
{
Mod(γ1 ∧ · · · ∧ γn) if non-empty

{v} for v ∈ {0, 1}m otherwise

Approval(Γ) = arg max
v∈Mod(

∨
i∈N γi)

|{i ∈ N | v ∈ Mod(γi)}|

1. EMaj(Γ)j = 1 i�

∑
i∈N

m1
ij

|Mod(γi)| ≥
n
2

2. TrueMaj(Γ) = Πj∈IM(Γ)j where, for j ∈ I:

M(Γ)j =
{
{x} if

∑
i∈N

mx
ij

|Mod(γi)| >
∑

i∈N
m1−x

ij
|Mod(γi)|

{0, 1} otherwise

3. 2sMaj(Γ) = Maj(Maj(γ1), . . . ,Maj(γn))

Agents Goal pro�le
N (
 ∧�∧ ≈) (111)
• (¬
 ∧ ¬�∧ ≈) (001)

(
 ∧ ¬� ∧ ¬ ≈)∨ (100)
� (¬
 ∧� ∧ ¬ ≈)∨ (010)

(¬
 ∧ ¬�∧ ≈) (001)

What is the output of the di�erent rules?

Axiomatics - Characterization

Anonymity (A): Agents’ (goals) are equally important

Neutrality (N): Issues are equally important

Independence (I): Each issue j is decided by a function fj
Unanimity (U): Result follows agents’ unanimous choice

Positive responsiveness (PR): Adding (deleting) support

for an issue when the result is equally irresolute or

favoring acceptance (rejection), gives a result strictly

favoring acceptance (rejection)

Egalitarianism (E): Every model of a goal has a weight

proportional to the total number of models of the goal

Duality (D): Rule isn’t biased for acceptance/rejection

A goal-based voting rule satisfies (E), (I), (A), (N), (PR),

(U) and (D) if and only if it is TrueMaj.

Similar to results for majority in Judgment Aggregation.

Computational Complexity

We study the complexity to compute the result of rules.

WinDet(F ) profile Γ, issue j
• F(Γ)j = 1?

WinDet
?
(F ) profile Γ, set S ⊆ I, ρ : S → {0, 1}
• ∃ v ∈ F(Γ) with v(j) = ρ(j) for j ∈ S?

Θ
p
2: problems solvable in poly time with O(log n)

queries to an NP oracle

PP: problems solvable by a probabilistic TM in poly

time, with error probability < 1/2

WinDet
?
(Conj) is NP-hard.

WinDet
?
(Approval) is Θ

p
2-complete.

WinDet of majorities is PP-hard.

Reductions from: SAT, Max-Model and Maj-SAT-p.
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