Judgment Aggregation in Dynamic Logic of Propositional Assignments

Arianna Novaro, Umberto Grandi, Andreas Herzig CNRS-IRIT, University of Toulouse

EXPLORE-2017, São Paulo

Motivation

Expressing a (social choice) framework in a formal language allows us to use automated reasoning tools, to *find* or to *check* results.

Social choice functions ---> propositional logic \rightarrow SAT-solvers Ranking sets of objects ---> propositional logic \rightarrow SAT-solvers Judgment aggregation \rightarrow JA logic \rightarrow ?

Judgment aggregation \rightarrow DL-PA --+ propositional logic \rightarrow SAT-solvers

Papers by Ågotnes, Endriss, Geist, van der Hoek, Lin, Tang, Wooldridge,

Talk outline

1 Recap of Judgment Aggregation (in Binary Aggregation)

2 Introduction to Dynamic Logic of Propositional Assignments

3) Translating aggregation rules, axioms and agenda safety

4 A last concluding slide

Binary Aggregation with Integrity Constraints

We have a set of n agents and a set of m issues. An integrity constraint IC models logical dependencies among issues.

Example of IC: " \neg (Issue 1 \land Issue 2 \land Issue 3)"Issue 1 Issue 2 Issue 3Agent 101Agent 210Agent 310Majority11

i's individual ballot $B_i \in \{0,1\}^m$ profile $\mathbf{B} = (B_1, \dots, B_n)$ aggregation rule F : $Mod(IC)^n \to \mathcal{P}(\{0,1\}^m) \setminus \{\emptyset\}$

Dynamic Logic of Propositional Assignments

Propositional Dynamic Logic models abstractly computer programs. Dynamic Logic of Propositional Assignments is an instance of PDL.

The language of DL-PA has two types of expressions:

formulas $\varphi ::= p \mid \top \mid \perp \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle \pi \rangle \varphi$ programs $\pi ::= +p \mid -p \mid \pi; \pi \mid \pi \cup \pi \mid \varphi$?

- p ranges over a countable set of propositional variables
- ▶ possible to define the other connectives $(\land, \rightarrow, ...)$
- possible to define abbreviations for common programs

 $(p?;+q) \cup (\neg p?;-r)$ $\Rightarrow \text{ if } p \text{ then } + q \text{ else } - r$

How to translate JA into DL-PA?

The basic ideas:

- A profile \rightarrow a valuation over a set of variables
- ► An aggregation rule \rightarrow a DL-PA program
- The outcome \rightarrow a valuation over another set of variables

	1	2	profile $\mathbb{B}^{3,2} = \{p_{11}, p_{12}, p_{21}, \dots\}, \text{ with } p_{11} \text{ and } p_{22} \text{ false}$
Agent 1	0	1	majority a DL-PA program "maj"
Agent 2	1	0	
Agent 3	1	1	
Majority	1	1	. ${f outcome}$. ${\Bbb O}^2=\{p_1,p_2\},$ with both p_1 and p_2 true

Translating aggregation rules

All aggregation rules are expressible as DL-PA programs.

Proof idea.

- 1. Identify a profile B by a formula φ_B
- 2. Build program $\pi_{F(B)}$ setting the outcome as in F(B)
- 3. Write a long sequence of "if φ_{B} do $\pi_{F(B)}$ " programs

 \Rightarrow Interested in more compact programs for aggregation rules.

Translating Slater rule

Binary Aggregation

 $\mathsf{Slater}_{\mathsf{IC}}(\boldsymbol{B}) \ = \ \operatornamewithlimits{argmin}_{B\models\mathsf{IC}} H(B,\mathsf{Maj}(\boldsymbol{B}))$

DL-PA

Translating axioms

▶ Single-profile axioms (unanimity, issue-neutrality, ...)

- outcome linked to the structure of a single profile
- \Rightarrow we use propositional logic

Multi-profile axioms (independence, monotonicity, anonimity)

- outcomes linked to structures of multiple profiles
- \Rightarrow we use DL-PA

We prove also here that our translations are correct.

Translating monotonicity

Binary Aggregation

Let $(\boldsymbol{B}_{-i},B'_i)=(B_1,\ldots,B'_i,\ldots,B_n)$ for a profile \boldsymbol{B} :

For any issue j, agent i, profiles $\mathbf{B} = (B_1, \dots, B_n)$ and $\mathbf{B}' = (\mathbf{B}_{-i}, B'_i)$, if $b_{ij} = 0$ and $b'_{ij} = 1$ then $F(\mathbf{B})_j = 1$ implies $F(\mathbf{B}')_j = 1$.

DL-PA

$$\bigwedge_{j\in\mathcal{I}} \left(p_j \to \bigwedge_{i\in\mathcal{N}} [+p_{ij}; \mathsf{prof}_{\mathsf{IC}}(\mathbb{B}^{n,m}, \mathbb{O}^m); \mathsf{f}(\mathbb{B}^{n,m})] p_j \right)$$

Translating agenda safety

The *structure* of IC ensures classes of aggregation rules (defined by the axioms they satisfy) to return an outcome satisfying IC.

- median property
- k-median property
- simplified median property

Turned as DL-PA formulas, using the concept of prime implicants.

$$\mathsf{PI}(P,\varphi) := [\mathsf{flip}^1(P)] \langle \mathsf{flip}^{\geq 0}(\mathbb{P}_{\varphi} \setminus P) \rangle \neg \varphi \wedge [\mathsf{flip}^{\geq 0}(\mathbb{P}_{\varphi} \setminus P)] \varphi.$$

Conclusions

We expressed many different aspects of Judgment Aggregation in Dynamic Logic of Propositional Assignments for the first time.

- Classical aggregation problems (e.g., winner determination) can be expressed in DL-PA.
- Checking whether rules satisfy axioms seems less promising than investigating further the agenda safety problem.
- Implementing examples of automated reasoning.
- Manipulation problem could also be translated.

