Goal-based Collective Decisions Axiomatics and Computational Complexity

IJCAI-2018

Arianna Novaro, Umberto Grandi IRIT, University of Toulouse Dominique Longin, Emiliano Lorini IRIT, CNRS, Toulouse

ŤΡΙΤ

A group of agents wants to visit Stockholm

A group of agents wants to visit Stockholm

 \Rightarrow use propositional formulas

Framework

n agents decide on m binary issues

• $\{\blacktriangle, \bullet, \blacksquare\}$ and $\{c, m, a\}$

► agent i has for goal a propositional formula \(\gamma_i\), whose models are in the set Mod(\(\gamma_i\))

•
$$\gamma_{-} = (c \land \neg m \land \neg a) \lor (\neg c \land m \land \neg a) \lor (\neg c \land \neg m \land a)$$

•
$$Mod(\gamma_{-}) = \{(100), (010), (001)\}$$

Goal-based Voting Rules

A goal-based voting rule is a collection of functions for all n and m:

 $F: (\mathcal{L}_{\mathcal{I}})^n \to \mathcal{P}(\{0,1\}^m) \setminus \emptyset$

• $(\gamma_{\blacktriangle}, \gamma_{\bullet}, \gamma_{\blacksquare}) \mapsto \{(101), (000)\}$

A resolute rule returns singleton on all profiles (else, irresolute)

Goal-based Voting Rules

A goal-based voting rule is a collection of functions for all n and m:

 $F: (\mathcal{L}_{\mathcal{I}})^n \to \mathcal{P}(\{0,1\}^m) \setminus \emptyset$

• $(\gamma_{\blacktriangle}, \gamma_{\bullet}, \gamma_{\blacksquare}) \mapsto \{(101), (000)\}$

A resolute rule returns singleton on all profiles (else, irresolute)

Conjunction: If the *conjunction of the agents' goals* is satisfiable, pick the common models (else, a default)

Approval: All models satisfying the maximal number of goals

Issue-wise Majorities

1.
$$EMaj(\Gamma)_j = 1$$
 iff $\left(\sum_{i \in \mathcal{N}} \frac{m_{ij}^i}{|\mathsf{Mod}(\gamma_i)|}\right) \ge \frac{n}{2}$
2. $TrueMaj(\Gamma) = \prod_{j \in \mathcal{I}} M(\Gamma)_j$ with, for $j \in \mathcal{I}$:

$$M(\mathbf{\Gamma})_j = \begin{cases} \{x\} & \text{if } \sum_{i \in \mathcal{N}} \frac{m_{ij}^x}{|\mathsf{Mod}(\gamma_i)|} > \sum_{i \in \mathcal{N}} \frac{m_{ij}^{1-x}}{|\mathsf{Mod}(\gamma_i)|} \\ \{0,1\} & \text{otherwise} \end{cases}$$

3. $2sMaj(\Gamma) = Maj(Maj(\gamma_1), \ldots, Maj(\gamma_n))$

Issue-wise Majorities

1.
$$EMaj(\Gamma)_j = 1$$
 iff $\left(\sum_{i \in \mathcal{N}} \frac{m_{ij}^i}{|\mathsf{Mod}(\gamma_i)|}\right) \ge \frac{n}{2}$
2. $TrueMaj(\Gamma) = \prod_{j \in \mathcal{I}} M(\Gamma)_j$ with, for $j \in \mathcal{I}$:

$$M(\Gamma)_j = \begin{cases} \{x\} & \text{if } \sum_{i \in \mathcal{N}} \frac{m_{ij}^x}{|\mathsf{Mod}(\gamma_i)|} > \sum_{i \in \mathcal{N}} \frac{m_{ij}^{1-x}}{|\mathsf{Mod}(\gamma_i)|} \\ \{0,1\} & \text{otherwise} \end{cases}$$

3.
$$2sMaj(\Gamma) = Maj(Maj(\gamma_1), \ldots, Maj(\gamma_n))$$

$$\begin{array}{c|c} \bullet & (c \land m \land a) & (111) \\ \hline \bullet & (\neg c \land \neg m \land a) & (001) \\ \hline & (c \land \neg m \land \neg a) \lor (\neg c \land m \land \neg a) \lor (\neg c \land \neg m \land a) & (010) \\ & (001) \end{array}$$

Axiomatics

We axiomatically characterize the $TrueMaj\,$ rule, adapting axioms from Social Choice Theory.

A rule F satisfies Anonymity, Neutrality, Independence, Unanimity, Positive Responsiveness, Egalitarianism and Duality

if and only if

F is TrueMaj.

Computational Complexity

We study the *winner determination* problem for our rules (how hard is it to compute the result).

$$\bullet \ \Theta_2^p = \mathrm{P}^{\mathrm{NP}[\log n]}$$

PP = Probabilistic Polynomial time

WINDET^{*} of approval is Θ_2^p -complete.

WINDET of majorities is PP-hard.

Conclusions

Introduction of the framework of goal-based voting

- Definition of multiple voting rules, with
 - an axiomatic characterisation of the TrueMaj rule
 - a study of their computational complexity
- Tension between resoluteness and biasedness

- ≫ Open questions in complexity
- >> Agents behaving strategically