Collective Decision-Making with Goals

Arianna Novaro

PhD Thesis Defense 12th of November 2019

Supervised by Umberto Grandi Dominique Longin Emiliano Lorini

The Research (Fields) Behind the Title

Collective Decision-Making with Goals

Multi-Agent Systems

Interactions of multiple agents acting towards a goal.

Computational Social Choice Aggregation of preferences or opinions of a group of agents.

Game Theory

Strategic agents trying to maximize their utilities.

Logical Languages

To represent goals, agents and their interactions.

A Tale of Two Research Questions

1. How can we design aggregation procedures to help a group of agents having compactly expressed goals and preferences make a collective choice?

2. How can we model agents with conflicting goals who try to get a better outcome for themselves by acting strategically?

Presentation Roadmap

1. Goal-based Voting

2. Aggregation of gCP-nets

Strategic Behavior -

- 3. Strategic Goal-based Voting
- 4. Strategic Disclosure of Opinions on a Social Network
- 5. Relaxing Exclusive Control in Boolean Games

Part I: Aggregation

Goal-based Voting | Framework

n agents in A have to decide over m binary issues in I
 A = {A, B, C} and I = {morning, guest_talks, lunch}

• agent *i*'s goal is prop. formula γ_i with models $Mod(\gamma_i)$

- $\gamma_C = \texttt{guest_talks} \land (\texttt{morning} \rightarrow \texttt{lunch})$
- $Mod(\gamma_C) = \{(111), (011), (010)\}$
- a goal-profile Γ = (γ₁,..., γ_n) contains all agents' goals
 no integrity constraints

Novaro, Grandi, Longin, Lorini. *Goal-Based Collective Decisions: Axiomatics and Computational Complexity*. IJCAI-18.

Goal-based Voting | Rules

A goal-based voting rule is a collection of functions for all n and m $F: (\mathcal{L}_{\mathcal{I}})^n \to \mathcal{P}(\{0,1\}^m) \setminus \{\emptyset\}$

Approval: Return all interpretations satisfying the most goals. Majority: ... how to generalize to propositional goals?

${\rm agent} \ i$	$Mod(\gamma_i)$	
А	(000)	<i>EMaj</i> Majority with equal weights to models
В	(010) (100)	<i>TrueMaj</i> Majority with equal weights to models and fair treatment of ties.
С	$(111) \\ (011) \\ (010)$	<i>2sMaj</i> Majority done in two steps: on goals, and then on result of step one.

Goal-based Voting | Rules

A goal-based voting rule is a collection of functions for all n and m $F: (\mathcal{L}_{\mathcal{I}})^n \to \mathcal{P}(\{0,1\}^m) \setminus \{\emptyset\}$

Approval: Return all interpretations satisfying the most goals. Majority: ... how to generalize to propositional goals?

	${\rm agent} \ i$	$Mod(\gamma_i)$		
	А	(000)	EMaj	Majority with equal weights to models.
	В	(010) (100)	TrueMaj	Majority with equal weights to models and fair treatment of ties.
-	С	$(111) \\ (011) \\ (010)$	2sMaj	Majority done in two steps: on goals, and then on result of step one.

Goal-based Voting | Axioms

The axiomatic method in Social Choice Theory is an established approach studying which properties are satisfied by voting rules.

Challenge: How to generalize axioms to goal-based voting?

	issue-wise			model-wise		
T	А	(0 10)	А	(010)		
I wo interpretations for unanimity (and others)	В	(0 10)	В	(010)		
	С	(0 10)	С	(010)		
		(0 11)		(011)		

Goal-based Voting | Axiomatic Results

Negative results: Axioms often incompatible.

Theorem. No resolute F can satisfy both anonymity and duality.

Positive results: Characterization of the rule *TrueMaj*.

Theorem. A rule is egalitarian, independent, neutral, anonymous, monotonic, unanimous and dual if and only if it is *TrueMaj*.

Goal-based Voting | Complexity Results

How hard is it to compute the outcome of a rule F? WINDET(F) Given profile Γ and issue $j \in \mathcal{I}$, is it the case that $F(\Gamma)_j = 1$?

WINDET (F)	membership	hardness	_
Approval	Θ_p^2 -com	-	
EMaj	PSPACE	PP	
2sMaj	PPP	PP	
TrueMaj	PSPACE	PP	(ii)
$\gamma_i \in \mathcal{L}^\wedge, \mathcal{L}^ee$ EMaj, 2sMaj, TrueMaj		P	(;;)

PP: Probabilistic Polynomial Time

Haret, Novaro, Grandi. Preference Aggregation with Incomplete CP-nets. KR-18.

gCP-nets | Semantics

Aggregate dominance relations in the individual CP-nets by using four semantics.

Pareto Dominance stays if all agents have it

maj Dominance stays if a majority of agents have it

 $\ensuremath{\mathsf{max}}$ Dominance stays if a majority of non-indifferent agents have it

rank Sum of length of longest path to a non-dominated dominance class

gCP-nets | Computational Problems

Dominance

Dominance: $o_1 >_N o_2$

Consistency

CONSISTENCY: there is no o such that $o >_N o$

Dominance for o

wNon-Dom'ed: Non-Dom'ed: Dom'ing: Str-Dom'ing:

```
o' >_N o implies o >_N o' for all o'
there is no o' so that o' >_N o (including o' = o)
o >_N o' for all o'
o is dominating and non-dominated in >_N
```

Existence

∃Non-Dom'ed: ∃Dom'ing: ∃Str-Dom'ing:

there is a non-dominated outcome in $>_N$ there is a dominating outcome in $>_N$ there is a strongly dominating outcome in $>_N$

gCP-nets | Complexity Results

	one gCP-net	Pareto	maj	max	rank
Dominance	PSPACE-c	PSPACE-c	PSPACE-c	PSPACE-c	PSPACE-h
Consistency	PSPACE-c	PSPACE-c	PSPACE-h	PSPACE-h	
WNON-DOM'ED	PSPACE-c	PSPACE-c	PSPACE-c	PSPACE-h	PSPACE-h
Non-Dom'ed	Р	PSPACE-c	PSPACE-c	in PSPACE	—
Dom'ing	PSPACE-c	PSPACE-c	PSPACE-c	PSPACE-c	PSPACE-h
Str-Dom'ing	PSPACE-c	PSPACE-c	PSPACE-c	PSPACE-c	—
∃Non-Dom'ed	NP-c	PSPACE-c	NP-h	NP-h	
∃Dom'ing	PSPACE-c	PSPACE-c	PSPACE-c	PSPACE-c	—
$\exists Str-Dom'ing$	PSPACE-c	PSPACE-c	PSPACE-c	PSPACE-c	_

Most results do **not** become **harder** when moving from one to multiple gCP-nets.

Part II: Strategic Behavior

Strategic Goal-based Voting | Example

	А	(111)	(111)
A: "Morning, guest talks, lunch."	В	(010)	(010)
B: "Afternoon, guest talks, no lunch."C: "Either afternoon, guest talks and lunch, or no guest talks and no lunch."	С	(011) (100) (000)	(001)
	TrueMaj	(010)	(011)

Novaro, Grandi, Longin, Lorini. Strategic Majoritarian Voting with Propositional Goals (EA). AAMAS-19.

Strategic Goal-based Voting | Framework

F is resolute if it always returns a singleton output.

• An agent *i* is satisfied with $F(\Gamma)$ iff $F(\Gamma) \subset Mod(\gamma_i)$.

F is weakly resolute $F(\Gamma) = Mod(\varphi)$ for φ a conjunction on all Γ .

An agent i is satisfied with F(Γ) ... depends on if she is an optimist, a pessimist or an expected utility maximizer.

F is strategy-proof if for all Γ there is no agent i who would get a preferred outcome by submitting goal γ'_i .

Strategic Goal-based Voting | Results

Agents may know each other and have some ideas about their goals ...

Unrestricted: *i* can send any γ'_i instead of her truthful γ_i Erosion: *i* can only send a γ'_i s.t. $Mod(\gamma'_i) \subseteq Mod(\gamma_i)$ Dilatation: *i* can send only a γ'_i s.t. $Mod(\gamma_i) \subseteq Mod(\gamma'_i)$

	\mathcal{L}		\mathcal{L}^{\wedge}		\mathcal{L}^{ee}		\mathcal{L}^\oplus	
	Е	D	E	D	Е	D	Е	D
EMaj	М	М	SP	SP	Μ	SP	М	Μ
TrueMaj	Μ	Μ	SP	SP	Μ	SP	М	Μ
2sMaj	Μ	Μ	SP	SP	SP	SP	Μ	Μ

Theorem. MANIP(*2sMaj*) and MANIP(*EMaj*) are PP-hard.

Strategic Disclosure of Opinions | Framework

"Is Toulouse the best city?"

- Agents have binary opinions on issues and they can decide to use their influence power on others
- States consist of all opinions and use of influence of agents
- An influence network is a directed irreflexive graph $E \subseteq N \times N$ s.t.

 $(i,j) \in E$ iff agent i influences agent j

$$\overline{\mathbb{Q}} \to \overline{\mathbb{Q}} \to \overline{\mathbb{Q}} \to \overline{\mathbb{Q}}$$

Strategic Disclosure of Opinions | Games

The opinions update process:

- 1. Agents activate (or not) their influence power on (some) issues
- 2. Agents update opinions via unanimous aggregation

Influence Games: agents, issues, influence network, aggregation functions, initial state and individual goals (Linear Temporal Logic)

$$\begin{split} \mathsf{influence}(i,C,J) = & \Diamond \Box \bigwedge_{p \in J} \left(\mathsf{op}(i,p) \to \bigcirc \mathsf{pcon}(C,p) \right) \land \\ & (\neg \mathsf{op}(i,p) \to \bigcirc \mathsf{ncon}(C,p)) \Big) \end{split}$$

Strategic Disclosure of Opinions | A Result

Prop. Using influence is not a dominant strategy for Influence goal.

Shared and Exclusive Control | Framework

In different situations, control over issues is exclusive or shared.

Iterated games where agents have goals in LTL
 Logics ATL and ATL* to reason about the games, interpreted over Concurrent Game Structures

Belardinelli, Grandi, Herzig, Longin, Lorini, **Novaro**, Perrussel. *Relaxing Exclusive Control in Boolean Games.* TARK-17.

Shared and Exclusive Control | Result

Theorem. Verification of ATL* formulas on CGS with shared control (SPC) reducible to CGS with exclusive control (EPC).

- • • Define a corresponding CGS-EPC from a given CGS-SPC
- • Define a translation function tr within ATL*
- ••• Show that the CGS-SPC satisfies φ if and only if the corresponding CGS-EPC satisfies $tr(\varphi)$

Conclusion and Perspective

 How can we design aggregation procedures to help a group of agents having compactly expressed goals and preferences make a collective choice?

Goal-based Voting

Framework where agents can express complex goals compactly Many interesting rules, and characterization result for *TrueMaj* WINDET hard in general, but restrictions make it tractable

Aggregation of gCP-nets

Agents can state incomplete preferences, then aggregated Most results do not become harder with respect to a single agent

2. How can we model agents with conflicting goals who try to get a better outcome for themselves by acting strategically?

Majoritarian Goal-based Voting Strategy-proofness for restrictions on language and strategies

Disclosure of Opinions on Networks Intuitive idea, complex dynamic: results for specific graphs and goals

Shared and Exclusive Control in Concurrent Game Structures Natural model for shared control, still reducible to exclusive control

Perspectives

Explain axioms to users (choose when incompatible)

Characterize language restrictions giving tractability

Opinion delegation rather than diffusion

Credits to Freepik, Lyolya, Nikita Golubev, smalllikeart at flaticon.com for the icons.