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Scenario 1: Friends Organize a Potluck

meat wine fish

“If we have steak “I hope we eat “I hate herring and
I want red wine.” steak or herring.” I like white wine.”
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Scenario 2: Friends Organize a Visit

Decide together which places to visit.

Should we go check out the bridge?
Should we go see the clock?
Should we visit the castle?
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Boolean Games, Intuitively

agent 1

a, b, c

(a ∨ d)→ g

agent 2

d, e

e ∧ f

agent 3

f , g

b↔ (c ∧ f)

Harrenstein, van der Hoek, Meyer and Witteveen. Boolean games. TARK-2001.
Bonzon, Lagasquie-Schiex, Lang and Zanuttini. Boolean games revisited. ECAI-2006.
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Boolean Games, Formally

A Boolean Game is a tuple G = (N,Φ, π,Γ) such that:

I N = {1, . . . , n} is a set of agents

I Φ is a finite set of variables

I π : N → 2Φ is a control function (a partition of Φ)

I Γ = {γ1, . . . , γn} is a set of propositional formulas over Φ

N = {1, 2, 3}
Φ = {a, b, c, d, e, f, g}
π(1) = {a, b, c}, π(2) = {d, e}, π(3) = {f, g}
Γ = { (a ∨ d)→ g , e ∧ f , b↔ (c ∧ f) }
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Strategies and Utilities for Boolean Games

A strategy σi is an assignment to the variables in π(i).
A strategy profile is a tuple σ = (σ1, . . . , σn): a valuation on Φ.
The (binary) utility of agent i is 1 if σ |= γi, and 0 otherwise.

π(1) = {a, b, c}, π(2) = {d, e}, π(3) = {f, g}

σ1(a) = σ1(b) = 1, σ1(c) = 0 σ1 = {a, b}
σ2(d) = 0, σ2(e) = 1 σ2 = {e}
σ3(f) = σ3(g) = 1 σ3 = {f, g}

Which are the utilities of the agents?

Γ = { (a ∨ d)→ g , e ∧ f , b↔ (c ∧ f) }

8/30Arianna Novaro



SEGA 2018Relaxing Exclusive Control in Boolean Games

Winning Strategies

σ−i = (σ1, . . . , σi−1, σi+1, . . . , σn) is the projection of σ on N \ {i}

A winning strategy σi for i is such that (σ−i, σi) |= γi for all σ−i.

agent 1

a, b, c

(a ∨ d)→ c

agent 2

d, e

e↔ b

A winning strategy for agent 1? And for agent 2?
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Iterated Boolean Games, Intuitively

agent 1

a, b, c

(a ∨ d)U g

agent 2

d, e

e ∧ f

agent 3

f , g

b↔©(c ∧ f)

•
0

•
1

•
2

•
3

•
4

•
5 . . .

Gutierrez, Harrenstein, Wooldridge. Iterated Boolean Games. Information and
Computation 242:53-79. (2015).
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Iterated Boolean Games, Formally

An iterated Boolean Game is a tuple G = (N,Φ, π,Γ) such that:

I N = {1, . . . , n} is a set of agents

I Φ is a finite set of variables

I π : N → 2Φ is a control function (a partition of Φ)

I Γ = {γ1, . . . , γn} is a set of LTL formulas over Φ

We assume that agents have memory-less strategies
= their choice of action depends on the current state only.
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What Can Agents Do?

ATL∗ Syntax

Alternating-time Temporal Logic (∗) allows us to talk about the
strategic abilities of the agents, when time is involved.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈C〉〉ψ
ψ ::= ϕ | ¬ψ | ψ ∨ ψ | ©ψ | ψ U ψ

〈〈C〉〉ψ agents in C can enforce ψ, regardless of actions of others
©ψ ψ holds at the next step

ψ1 U ψ2 ψ2 holds in the future, and until then ψ1 holds

Interpreted over Concurrent Game Structures (CGS), such as . . .
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Concurrent Game Structures

with Exclusive Propositional Control

A CGS-EPC is a tuple G = (N,Φ1, . . . ,Φn, S, d, τ) where:

I N = {1, . . . , n} is a set of agents
I Φ = Φ1 ∪ · · · ∪ Φn is a set of variables (partition)
I S = 2Φ is the set of states, i.e., all valuations over Φ
I d : N × S → (2A \ ∅), for A = 2Φ, is the protocol function,

such that d(i, s) ⊆ Ai for Ai = 2Φi

I τ : S ×An → S is the transition function, such that
τ(s, α1, . . . , αn) =

⋃
i∈N αi

Belardinelli, Herzig. On Logics of Strategic Ability based on Propositional Control.
IJCAI-2016.
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Example of CGS-EPC:

Friends Organize a Potluck

I N = {1, 2, 3}
I Φ = Φ1 ∪ Φ2 ∪ Φ3 = {wine} ∪ {steak} ∪ {herring}
I S = {∅, {wine}, {wine, steak}, {wine, steak, herring}, . . . }
I for any s ∈ S, d(1, s) = {∅, {wine}} ,

d(2, s) = {∅, {steak}} , d(3, s) = {∅, {herring}}
I τ(s, α1, α2, α3) = α1 ∪ α2 ∪ α3

• τ(s, {wine}, {steak}, ∅) = {wine, steak} = s′
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Concurrent Game Structures

with Shared Propositional Control

A CGS-SPC is a tuple G = (N,Φ0, . . . ,Φn, S, d, τ) where:

I N,S, and d are defined as for CGS-EPC

I Φ = Φ0 ∪ Φ1 ∪ · · · ∪ Φn is a set of variables

I τ : S ×An → S is the transition function

Belardinelli, Grandi, Herzig, Longin, Lorini, Novaro, Perrussel. Relaxing Exclusive
Control in Boolean Games. TARK-2017.
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Example of CGS-SPC:

Friends Organize a Visit

I N = {1, 2, 3}
I Φ = Φ1 = Φ2 = Φ3 = {bridge, clock, castle}
I S = {∅, {bridge}, {bridge, clock}, {clock, castle}, . . . }
I for any s ∈ S, d(1, s) = d(2, s) = d(3, s) = S

I p ∈ τ(s, α1, α2, α3) if and only if |{i ∈ N | p ∈ αi}| ≥ 2

• τ(s, {bridge, castle}, {clock}, {castle}) = {castle} = s′
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What Can Agents Do?

ATL∗ Semantics

I λ = s0s1 . . . is a path if, for all k ≥ 0, τ(sk, α) = sk+1 such

that α = (α1, . . . , αn) and αi ∈ d(i, sk) for i ∈ N
I out(s,σC) = {λ | s0 = s and, for k ≥ 0, there is α such that

σC(i)(sk) = αi for all i ∈ C and τ(sk, α) = sk+1 }

(G, s) |= p iff p ∈ s
(G, s) |= 〈〈C〉〉ψ iff for some σC , for all λ ∈ out(s,σC), (G, λ) |= ψ

(G, λ) |= ϕ iff (G, λ[0]) |= ϕ
(G, λ) |=©ϕ iff (G, λ[1,∞]) |= ϕ

(G, λ) |= ϕU ψ iff there is t′ ≥ 0 such that
(
(G, λ[t′,∞]) |= ψ and

for all 0 ≤ t′′ < t′ : (G, λ[t′′,∞]) |= ϕ
)
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Iterated Boolean Games as CGS

An Iterated Boolean Game is a tuple (G, γ1, . . . , γn) such that
I G is a CGS-EPC where d(i, s) = Ai for every i ∈ N and s ∈ S
I for every i ∈ N the goal γi is an LTL formula

An Iterated Boolean Game with shared control is a tuple
(G, γ1, . . . , γn) such that

I G is a CGS-SPC
I for every i ∈ N the goal γi is an LTL formula

We can also express influence games and aggregation games.

Grandi, Lorini, Novaro, Perrussel. Strategic Disclosure of Opinions on a Social
Network. AAMAS-2017.
Grandi, Grossi, Turrini. Equilibrium Refinement through Negotiation in Binary Voting.
IJCAI-2015.
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Exclusive and Shared Control Structures

A CGS-SPC can be simulated by a CGS-EPC.

• ◦ ◦ Define a corresponding CGS-EPC from a given CGS-SPC

• • ◦ Define a translation function tr within ATL∗

• • • Show that the CGS-SPC satisfies ϕ if and only if the
corresponding CGS-EPC satisfies tr(ϕ)
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• ◦ ◦ | The corresponding CGS-EPC

Shared control (CGS-SPC) G = (N,Φ0, . . . ,Φn, S, d, τ)

Exclusive control (CGS-EPC) G′ = (N ′,Φ′1, . . . ,Φ
′
n, S

′, d′, τ ′)

N ′ = adding a dummy agent

Φ′ = adding a turn variable and local copies of variables in Φ

• agent i controls her copies; dummy controls Φ and turn

S′ = all valuations over Φ′

d′ = depends on the truth value of turn variable:
agents act when turn false; dummy acts when turn true

τ ′ = updates according to agents’ actions
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Example and Graphical Representation

N = {1, 2} 7→ N ′ = {1, 2, ∗}
Φ1 = {p}, Φ2 = {p, q} 7→ Φ∗ = {p, q, turn},

Φ1 = {c1p}, Φ2 = {c2p, c2q}

λ[0]

λ′[0] λ′[1]

λ[1]

λ′[2] λ′[3]

λ[2]

λ′[4]

. . .

. . .

(α1 . . . αn)[0]

α′1 . . . α
′
n

+turn

∅
τ(λ′[1]|Φ, α)

(β1 . . . βn)[1]

β′1 . . . β
′
n

+turn

∅
τ(λ′[3]|Φ, β)

(δ1 . . . δn)[2]

δ′1 . . . δ
′
n

+turn

23/30Arianna Novaro



SEGA 2018Relaxing Exclusive Control in Boolean Games

• ◦ ◦ | The corresponding CGS-EPC

Shared control (CGS-SPC) G = (N,Φ0, . . . ,Φn, S, d, τ)

Exclusive control (CGS-EPC) G′ = (N ′,Φ′1, . . . ,Φ
′
n, S

′, d′, τ ′)

N ′ = N ∪ {∗}
Φ′ = Φ ∪ {turn} ∪ {cip | i ∈ N and p ∈ Φi}
• Φ′i = {cip ∈ Φ′ | p ∈ Φi}; Φ′∗ = {turn} ∪ Φ

S′ = 2Φ′

¬turn d′(i, s′) = {α′i ∈ A′i | αi ∈ d(i, s)} d′(∗, s′) = +turn

turn d′(i, s′) = ∅ d′(∗, s′) = τ(s, α) for αi(p) = s′(cip)

τ ′ =
⋃

i∈N ′ α
′
i
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• • ◦ | Translation tr within ATL∗

For p ∈ Φ, C ⊆ N and χ, χ′ either state or path formulas:

tr(p) = p
tr(¬χ) = ¬tr(χ)
tr(χ ∨ χ′) = tr(χ) ∨ tr(χ′)
tr(©χ) = ©© tr(χ)

tr(χU χ′) = tr(χ)U tr(χ′)
tr(〈〈C〉〉χ) = 〈〈C〉〉tr(χ)

I tr(p ∨ q) = tr(p) ∨ tr(q) = p ∨ q
I tr(©(p ∨ q)) =©© tr(p ∨ q) = . . . =©© (p ∨ q)
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Intermezzo: Hidden Machinery

× The CGS-EPC has more variables than the original CGS-SPC

X For state s in the CGS-SPC, define a canonical state in the
CGS-EPC that agrees with s on Φ and everything else is false

× There are many paths λ′ in the CGS-EPC that could be
associated to a path λ in the original CGS-SPC

X Associate paths from the CGS-SPC and the CGS-EPC; then,
define the canonical paths (starting from the canonical state)

× Analogously, the strategies of CGS-SPC and CGS-EPC differ

X For each joint strategy in the CGS-SPC there is an associated
one in the CGS-EPC; and viceversa
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• • • | Main Result

Given a CGS-SPC G, the corresponding CGS-EPC G′ is such
that for all state-formulas ϕ and all path-formulas ψ in ATL∗:

for all s ∈ S (G, s) |= ϕ if and only if (G′, s′∗) |= tr(ϕ)
for all λ of G (G, λ) |= ψ if and only if (G′, λ′∗) |= tr(ψ)

for any λ′∗

Proof. By induction on the structure of formulas ϕ and ψ.
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Computational Complexity of CGS-SPC

Model-checking of ATL∗ in CGS-SPC is PSPACE-complete.

Proof. For membership use the PSPACE algorithm for ATL∗ on
general CGS. For hardness, satisfiability of LTL formula ϕ can be
reduced to model-checking 〈〈1〉〉ϕ on a CGS-SPC with one agent.

If G is an IBG with shared control, determining whether i has
a winning strategy is in PSPACE.

Proof. We have to check that 〈〈i〉〉γi holds.

28/30Arianna Novaro



Conclusions



SEGA 2018Relaxing Exclusive Control in Boolean Games

Conclusions

I We defined a new class of concurrent game structures (CGS)
where agents may have shared control over variables

I We showed that they can be (polynomially) “simulated”
within the class of CGS with exclusive control

I We showed that the complexity of the model-checking
problem of ATL∗ on CGS-SPC is PSPACE-complete
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